Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 21(2): 596-608, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33030758

ABSTRACT

Multilocus genetic processes in subdivided populations can be complex and difficult to interpret using theoretical population genetics models. Genetic simulators offer a valid alternative to study multilocus genetic processes in arbitrarily complex scenarios. However, the use of forward-in-time simulators in realistic scenarios involving high numbers of individuals distributed in multiple local populations is limited by computation time and memory requirements. These limitations increase with the number of simulated individuals. We developed a genetic simulator, MetaPopGen 2.0, to model multilocus population genetic processes in subdivided populations of arbitrarily large size. It allows for spatial and temporal variation in demographic parameters, age structure, adult and propagule dispersal, variable mutation rates and selection on survival and fecundity. We developed MetaPopGen 2.0 in the R environment to facilitate its use by non-modeler ecologists and evolutionary biologists. We illustrate the capabilities of MetaPopGen 2.0 for studying adaptation to water salinity in the striped red mullet Mullus surmuletus.


Subject(s)
Adaptation, Physiological , Genetics, Population , Software , Animals , Biological Evolution , Computer Simulation , Genetic Variation , Models, Genetic , Population Density , Salinity , Smegmamorpha/genetics
2.
Sci Total Environ ; 761: 144094, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33360652

ABSTRACT

Life cycle assessment (LCA) has been widely applied in many different sectors, but the marine products and seafood segment have received relatively little attention in the past. In recent decades, global fish production experienced sustained growth and peaked at about 179 million tonnes in 2018. Consequently, increased interest in the environmental implications of fishery products along the supply chain, namely from capture to end of life, was recently experienced by society, industry and policy-makers. This timely review aims to describe the current framework of LCA and its application to the seafood sector that mainly focused on fish extraction and processing, but it also encompassed the remaining stages. An excess of 60 studies conducted over the last decade, along with some additional publications, were comprehensively reviewed; these focused on the main LCA methodological choices, including but not limited to, functional unit, system boundaries allocation methods and environmental indicators. The review identifies key recommendations on the progression of LCA for this increasingly important sustaining seafood sector. Specifically, these recommendations include (i) the need for specific indicators for fish-related activities, (ii) the target species and their geographical origin, (iii) knowledge and technology transfer and, (iv) the application and implementation of key recommendations from LCA research that will improve the accuracy of LCA models in this sector. Furthermore, the review comprises a section addressing previous and current challenges of the seafood sector. Wastewater treatment, ghost fishing or climate change, are also the objects of discussion together with advocating support for the water-energy-food nexus as a valuable tool to minimize environmental negativities and to frame successful synergies.


Subject(s)
Climate Change , Seafood , Animals , Life Cycle Stages
3.
Sci Total Environ ; 690: 596-603, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31301500

ABSTRACT

Global climate stressors, like ocean warming and acidification, contribute to the erosion of structural complexity in marine foundation habitats by promoting the growth of low-relief turf, increasing grazing pressure on structurally complex marine vegetation, and by directly affecting the growth and survival of foundation species. Because mangrove roots are woody and their epibionts are used to ever-changing conditions in highly variable environments, mangrove habitats may be more resilient to global change stressors than other marine foundation species. Using a large-scale mesocosm experiment, we examined how ocean warming and acidification, under a reduced carbon emission scenario, affect the composition and structural complexity of mangrove epibiont communities and the use of mangrove habitat by juvenile fishes. We demonstrate that even a modest increase in seawater temperature of 1.2 °C leads to the homogenisation and flattening of mangrove root epibiont communities. Warming led to a 24% increase in the overall cover of algal epibionts on roots but the diversity of the epibiont species decreased by 33%. Epibiont structural complexity decreased owing to the shorter stature of weedy algal turfs which prospered under elevated temperature. Juvenile fishes showed alterations in mangrove habitat use with ocean warming and acidification, but these were independent of changes to the root epibiont community. We reveal that the quality of apparently resilient mangrove habitats and their perceived value as habitat for associated fauna are still vulnerable under a globally reduced carbon emission scenario.


Subject(s)
Climate Change , Global Warming , Temperature , Wetlands , Ecosystem , Oceans and Seas , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...